GROUPS, ALGEBRAS AND MEANS

PIOTR M. SOLTAN

ABSTRACT. The paper contains loose notes on the subject of amenability of discrete groups.
The origin of these notes is a series of lectures the author gave at the “Operator Algebras and
Quantum Groups” seminar at the Department of Mathematical Methods in Physics, Faculty of
Physics, University of Warsaw.

Throughout these notes I'" will be a discrete group with unit element denoted by e. We will
consider various algebras associated with I'. In particular the group algebra C[I'] and the convo-
lution algebra ¢!(I"). Note that C[I'] is a dense unital *-subalgebra of ¢!(I"). The convolution of
functions on I' will be denoted by the symbol “x7

(f*g)t)=>_ f(s)g(s™"1).

sel

The algebra ¢!(T") carries an isometric involution

@)= fe )
for f € ((T) and all t € T.

For t € T the symbol §; will denote the function I' — C whose value at ¢ is 1 and which is zero
elsewhere. The functions {§; };cr will be treated as elements of C[I'], £}(T") or £2(T") depending on
what we need.

Throughout the notes Hilbert space scalar products will be linear in the second variable. We
will use the notation (¢|v) for the scalar product of vectors ¢ and ¢ and if T is an operator on
the Hilbert space in question we will at times write (¢|T'|4) for the “matrix element” of T which
is the same thing as (¢|T).

For a Banach space X the symbol X will denote the closed unit ball of X. Moreover, sometimes
we will write Y7 for an intersection of a subset Y of X with X;.

1. REPRESENTATIONS OF I' AND ¢}(T)

By Rep(T") we will denote the class of all unitary representations of I'. For each U € Rep(T)
the Hilbert space on which U acts will be denoted by Hy. For f € ¢1(T') and U € Rep(T') we

define Uy € B(Hy)
Up=)_ O
ter
So defined mapping ¢*(I') > f — Uy € B(Hy) is a unital x-homomorphism.
For any ¢t € I" we denote by §; the characteristic function of {t¢}.

Proposition 1.1. There is a bijection between unital *-representations of £*(T') on Hilbert spaces
and unitary representations of T'.

In one direction we already constructed a representation of £*(T") from an element of Rep(T).
Conversely, given a unital *-representation 7 : £*(T') — B(H) for some Hilbert space H we define
U; = m(8;). Clearly this is a unitary representation of I' and for each f € £}(T") we have

Up =7(f)-
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2. GROUP C*-ALGEBRA

For any element f € ¢}(T") we define!

/]

cry= sup ||Uslls(my)-
UecRep(T")

This is always finite because for each f € ¢1(I') and U € Rep(T')

> rmu ) < 1O = [If -

tel tel’

HUf”B(HU) =
B(Hy

Let us define the regular representation \ : T' — B(@2 (F)) in which an element ¢ € I" is mapped
to the unitary operator A, € B(¢3(T')) acting as

(Ae)(s) = w(t™"s)

for any 1 € £?(T') and s € I'. By considering the regular representation we see that || - |

c(r) s a
norm, since for any f € ¢1(T') we have

[fllex @y = 1A fllBez@y) 2 [Ardellz = £l
which is zero if and only if f = 0.

The completion of ¢!(T") with respect to | - [|c=(r is denoted by C*(T') and it is a unital C*-
algebra. Any representation of C*(I') gives by restriction a unital *-representation of ¢!(I') and,
by construction, for any unital *-representation 7 of ¢!(I') on a Hilbert space H there exists a
unique representation of C*(I') whose restriction to £*(T") is m. It follows from Proposition 1.1
that representations of C*(I") are in bijective correspondence with unitary representations of I'.

3. POSITIVE DEFINITE FUNCTIONS

Definition 3.1. A function ¢ : I' — C is positive definite if for any n € N and t¢q,...,t, € I the
matrix

pltrit) eltrt) oo oty )

oty t1) plty t2) -ty tn)

oty ') oltyta) - ol tn)
is positive, i.e. for any z1,...,2, € C

n
> melt; )z = 0.
i,j=1

Proposition 3.2. Let ¢ be a positive definite function on I' then

(1) p(t=Y) =(t) forallt €T,
(2) |o(t)| < @le) for all t €T.

Proof. For any t € I' the matrix

[ o(e) so(t)}

p(t™h) p(e)
is positive. Therefore it must be selfadjoint (so that @(e) € R and (t~') = ¢(t)). Choosing
z1 = 1 and 29 such that |z3] = 1 and z0¢(t) = —!go(t)’ we get

0 <zZrp(e te)zy + Zrple )z + Zop(tte)zy + Zap(t 1) 20
= (lz1]* + |22/*) () + 2RZ12000(t)
(because ¢(t~1) = ¢(t)) and (2) follows. O

IThere is no need to worry about taking supremum over a class because we are in fact taking a supremum of an
image of the class Rep(T") inside the set R.
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In particular all positive definite functions are bounded and their /°°-norm is attained at e € I'.
Also notice that the complex conjugate of a positive definite function is positive definite and a
pointwise product of positive definite functions if positive definite. This is because the complex
conjugate of a positive matrix is positive and entry-wise product of positive matrices is positive:

Proposition 3.3. Let

o1 Qe v g Bii Bz - Bin

Qg1 Qo2 - Oag B2 P22 -+ Bon
A= . . ) . and B = . . .

Qp1 Qp2 - Qn.n ﬁn,l ﬁn,2 e ﬁn,n

be positive matrices and let

a11611 2B o canBia
ag 1021 q22B22 -0 a2nfon
an,lﬁn,l an,?ﬂn,Z e an,nﬁn,n
Then C' s positive.
Proof. Let us fix zq,..., 2z, € C. Since B is positive, there is a matrix
51,1 51,2 o 61,n
02,1 022 - 2
D ; ; ;
6n,1 671,2 e 6n n

)

such that B = D*D. We have
> Fmai Bz = Y T <Z <5k,z'5k,j>2j = Z( > (2ibki) i (ijsk,j))
ij=1 i,j=1 k=1 k=1 Mi,j=1
which is positive as each summand of the outer sum is positive. O
Ezample 3.4. Let U € Rep(T") and choose £ € Hy then the function
p:I'>t— (£|U:]) €C
is positive definite and ¢(e) = ||¢||?. Indeed if ¢1,...,t, € T and z1,..., 2, € C then

n n

> melty )z = Y 7 (€U UL [€) 7
i,j=1 ij=1
= Z (ZiUtig‘ZjUtjg)
ij=1
n 2
= Zintig >0
i=1

Any positive definite function ¢ on I' gives a linear functional on ¢}(I") (being an element of
¢>°(I")). We will denote this functional by w,:

we(f) =D e(t)f(2)
ter
for f € (Y(T).
Proposition 3.5. For any positive definite ¢ the functional w, is positive in the sense that for

any f € (1(T") we have
we(f** f) 2 0. (1)
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Proof. For f € {1(T') let (fn)nen be a sequence of finitely supported functions on I' converging to
[ in £'. Since w,, is continuous (|jwy| = ||l = ¢(e)) we have

we ([ [) = Tm o(f * fn).

Therefore it is enough to prove (1) for a finitely supported f. To that end let

=206,
i=1

zti5ti1> * (Z thcstj))
j=1

n
E : 24, We (5t;1 * §t.7)ztj
=1

We have

ool 5 1) w((z

1=

i

n
ztiw4p(5t;1tj)ztj = Z zTigo(t;ltj)zt]. > 0.

1 i,j=1

<.

Il

5]

O

Before we continue we need to turn our attention to the following fact: we know that for a
positive definite function ¢ the functional w,, is positive and attains its norm on J.. However this
is true for all positive functionals, not only those of the form w,, (in fact the following proof works
for a positive linear functional on any x-algebra). To see this let w be a positive functional on
¢1(T) and fixing f, g € ¢}(T') consider the polynomial

P(t) = w((f +1tg)" = (f +1g)).
Then P(t) > 0 for all £ € R. In particular the coefficient of ¢t must be real:
w(f*xg)+wlg"*f) eR.

For g = . we obtain w(f*)+w(f) € R and if moreover f = f* we get w(f) € R. This means that
w is a selfadjoint functional:

W) = w( (B +itg)")
hth* ~h—h*)

2

for any h € ¢1(T).
This shows that
P(t) = w(g" * g)t* + 2Rw(f* * g)t + w(g* * )
and the standard method yields the Schwarz inequality

* 2 * *
w(f**g)|” < w(f* = Nlw(g” *g).
To see that ||w| = w(d.) we note first that clearly ||w| > w(d.). On the other hand the Schwarz
inequality shows that for any f € ¢1(T")

2 * 2 *
w()|” = |w(®: « )" < w@e)w(f* * f) < w(@e)lwllfI3-
Taking sup on both sides gives
IFlli=1
lw]l* < w(@e)llw]
which shows that ||w]|] < w(de).
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In particular for any f,g € £*(I') we have
0<w(g™ =[x frg) < |lwlg” - xg)|lIf** fll
= w(g” #de x g)|If" # flly = wlg™ * g)[[f* * fll1-
Thus if w(g* * g) = 0 then w((f * g)* = (f * g)) = 0 and it follows that the subspace
No = {g € (D) |w(g™  g) = 0}
is1 a left ideal of ¢*(T). (It follows from the Schwarz inequality that this is a vector subspace of
¢(I).)

Proposition 3.6. Let ¢ be a positive definite function on T'. Then there exists U € Rep(T") and
& € Hy such that

o(t) = (§|UE)
forallt eT.

Proof. Let N' =N, as above, i.e
N ={f e /(D) |wo(f* * f) = 0}.
Since A is an ideal in /!(T") we have a representation 7 of /1(I') on H = ¢*(I') /N by
7(f)(h+N)=fxh+N.
Now H is a pre-Hilbert space with scalar product
(f+Nlg+N) = wo(f* * g).
and each 7(f) is bounded:
[7(F) B+ N)||* = (f s h+N|f #h+N)
= wy, ((f *h)* % (f xh))
S wy(h™ « h)[[f*  fla
< wp(R* +W)IFIF = I+ NP £,

so that ||7r(f)H <|Ifll-
Upon completing H to a Hilbert space H we obtain a unital *-representation 7 of £*(I') on H,
since

(h+Nm(f)g+N)) = (h+N|fxg+N)
=wy, (" * f * g)
=wo((f**h) xg) = (n(f)(h+N)|g+N).
Moreover the image & of &, in the obvious map ¢!(T") — H is a cyclic vector for 7 and we have
we(f) = (€lm()IE)-
Recall that ¢(t) = w,(d;). This means that
e(t) = (€IU:E),
where U € Rep(T) is defined as U; = w(d;) (cf. Proposition 1.1). O

Corollary 3.7. Let ¢ be a positive definite function on I'. Then the positive functional w, on
(1(T) is continuous for the norm || - ||« (r)-

Proof. We have

|we (N)] = [€lm(NIO] < [ (A < NEI*Nflle-cr)
for any f € ¢1(T). O

Therefore any positive definite function ¢ on I' defines a positive functional w, on C*(T').
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4. POSITIVE DEFINITE FUNCTIONS AND STATES ON C*(T")

Let us denote by P (I') the set of those positive definite functions on I' which have value 1 at
the neutral element e. Clearly for any ¢ € P;(I") the positive functional w, on C*(T") is a state.”
We will denote the state space of C*(I') by the symbol S(C*(T)).

Proposition 4.1. The mapping
Pi(l) 2 ¢ — w, € S(CHI)) (2)
is a bijection and a homeomorphism for the topology of pointwise convergence on Py (T") and weak*
topology on S(C*(I)).
Proof. For w € S(C*(I")) let 7, be the GNS representation of C*(I') with cyclic vector €. Define
Vo T3t — Q7w (0:)|) -
Clearly ¢, is a positive definite function. We have for any f € ¢1(I")

wo () =D pu(t)f(t)

tel

= Z (Qw‘ﬂ'w(@)‘gw) f(t)

ter

= (Qw > F(t)ma(6h) Qw>

ter

= (Qu|mo () |Q) = w(/).

Similarly for a fixed ¢ € P1(I') and any ¢ € I" we have
Pw, (t) = (Qu@ ‘7"%; (515)‘9%;) = W«p(ét) = p(t),
which shows that (2) is a bijection.
If (w;) is a net of states on C*(I") converging to a state w in the weak™ topology then

wi(ét) _— w(ét)

pointwise

for any t € I', i.e. ¢, —— @y-
Conversely if (p;) is a net in Py (T") converging pointwise to an element ¢ € P;(I") then

W, (6¢) —— wy(0¢)
for any t and thus

W, (1) — wy ()
for any x € C[I']. Given y € C*(T") we can for any € > 0 find z. € C[I'] such that

ly — zellcry < 3-
Moreover there exists 7. such that for all 7 3= i, we have
|we, (ze) — wy(ze)| < 5.
Since all w,, and w, have norm 1 on C*(T'), it follows that
|wso7: (y) — we(y) ‘ < |W<p7 Y) — W, x5)| + ‘ch (zc) — Ww(xs)| + |w¢>($s) - Wsa(y)| <eg

for all 4 = i.. U

iiA state on a C*-algebra is a positive linear functional of norm 1. A positive functional always attains its norm
on the unit.
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5. AMENABILITY

We define left and right translation operations on functions on I': let f be any function on T,
for t € T we define

Lif(s) = f(t7's),  Ruf(s) = f(s2)

forall seT.

Definition 5.1. T is amenable if there exists a state m on £*°(T") such that
m(Lef) =m(f)
for all f € ¢>°(T") and ¢t € I". Such a state m is called a left invariant mean on T'.

The next proposition shows how invariance of the mean can be expressed without using points
of the set T'.

Proposition 5.2. Let m be a left invariant mean on T'. Then for any ¢ € (*(I') such that
> o(s) =1 we have

sel’
: m(@+ f) = m(J)
for all f € ¢>°(T).

Note that if f € £°°(T") and ¢ € £}(T") then the convolution product ¢ * f is well defined because

for each t € T the sum
D ds)f(sTH) =D (s f(st)

sel sel
converges. Moreover ¢ x f € £°(I") and

560615710 < sup S[o9)] |60 < el

Proof of Proposition 5.2. Take f € £>°(T') and ¢ € ¢}(I'). We have
((Log) %)) = Dl s) f(s 1) =D d(s)f (s a™t) = (Lu(@* 1)) (1)

sel’ sel’

16 % flloo = sup
ter

Therefore the invariance of m gives
m((Lap) * f) = m(La(¢* f)) = m(d* f).
Therefore the map
¢ — m(¢x* [)
is a linear functional on ¢!(T") which is bounded:
[m(@x )] < 6 flloo < lloll1fll

and left invariant. It is easy to see that the only such functionals are given by constant functions
in £°(T") = ¢1(T")*. Therefore there exists a constant k(f) such that

m(¢x f) =k(f) > (s).
sel’

For ¢ such that > ¢(s) =1 we get
sel’

m(¢ = f) = k(f).
In particular we can take ¢ = d., which gives
k(f) =m(0e = f) = m(f).
O

Since invariance of m follows from the condition in Proposition 5.2 (by taking ¢ = d;), we see
that m is invariant if and only if it satisfies this condition.
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Example 5.3. Let us construct a mean on the group Z. Consider the subspace ¢ of convergent
sequences inside ¢>°(N). Let £ be an extension to £*°(N) of the (norm 1) functional lim: ¢ — C.
Now let T be the operator £°(Z) — ¢°°(N) defined as

(T(n) = 5t7 Y nf(k).
k=—n

Then m = LoT is a linear functional on £°°(Z) which is positive and has value 1 on the constant
function 1. Therefore it is a state. Moreover m is translation-invariant. This is because for
any f € ¢°°(Z) and any t € Z the function T'(f — L, f) belongs to the subspace ¢ of sequences
converging to 0. Indeed, for € Z we have

st 30 F0) -~ wk 3 40 1)

k=—n l=—n

RS f(l)].

k=—n l=—n—t

|T(f - Ltf)(")| =

_1
2n+1

In the two sums in the last expression many elements cancel. In fact one can see that there are
exactly 2|¢| terms which do not cancel, therefore

IT(f = Lef) ()] < 2| 1l

which converges to 0 as n — oo.

Example 5.3 shows how highly non-unique are means on amenable groups. By an application
of the Markov-Kakutani fixed point theorem one can show that any abelian group is amenable.

Ezample 5.4. Let us see that the free group on two generators, Fo, is not amenable. When a group
I" is amenable and m is an invariant mean on I" we can use m to define a translation-invariant
finitely additive probability measure p on I' by putting u(E) = m(xg) for any E C I'. We will
show that such a finitely additive invariant probability measure does not exist on Fs.

Denote the generators of Fo by a and b and let

Ay = {reduced words beginning with a},
B, = {reduced words beginning with b},
A_ = {reduced words beginning with ail},
B_ = {reduced words beginning with b_l}.

The group F» is a disjoint union of {e} and the sets A, By, A_ and B_. Now assume that there
exists a finitely additive translation-invariant probability measure p defined on all subsets of [,
Note that aA_ consists of all reduced words which do not begin with a. Thus

Fo=A,UaA_
(disjoint union). Therefore 1 = p(F2) = p(Ay) + u(aA-) = p(A4) + p(A-). Now since
bAy C By CaA_
we have pu(A4) = p(bAy) < p(aA-) = u(A-) and similarly from
bA_ C B, CatA;

we infer p(A_) = p(bA_) < p(a='Ay) = p(Ay). Thus p(A_) = p(A;) = i. But this implies
that u(B4) = u(B-) = 0, while

u(By) = p(bAy) = pu(Ay) = L.
This contradiction shows that Fo is not amenable.
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6. PERMANENCE PROPERTIES

Theorem 6.1.
(1) IfT is amenable and Tg C T is a subgroup then Ty is amenable.
(2) IfT is amenable and ® is a homomorphism form T onto a group Ty then Ty is amenable.
(3) If T has a normal subgroup T'y such that I'g and I'/Ty are amenable then T' is amenable.
(4) IfT has a directed family of subgroups (T's) such that T =|JT, and each T, is amenable
then I' is amenable.

Proof. Ad (1). Let m be a left invariant mean on I" and let (x;) be a system of representatives of
right cosets of I'y. We have
I'= |_| Fo.’EZ‘.

(Af)(szi) = f(s)

Define A : £>°(Ty) — ¢>°(T") by

for all s € Ty and let
mo : £°(Tg) > f — m(Af).
It is easy to see that mg is a state on £°°(T'g). Moreover, since for any ¢ € I'y we have
(ALef)(swi) = (Lef)(s) = f(t71s) = (Af)(t sws) = (LeAS)(E),
we see that
mo(Lef) = m(ALef) = m(LiAf) = m(LeAf) = mo(f).
Ad (2). Let m be a left invariant mean on I'. We define
mg : £°(T) 3 f — m(fod).
Clearly my is a state on £°(T'g). Take z € Ty and let y € T be such that z = ®(y). We have
((Laf)o®@)(t) = f(a7'@(1)) = f(R(y~'1) = (Ly(fo®))(®),
so that
mo(Laf) =m((Laf)o®) = m(Ly(fo®)) = m(fo®) = mo(f).
Ad (3). Let mg be an invariant mean on ¢*°(T'y) and m; an invariant mean on I'/Ty. Let us
define a bounded linear map T': £>°(T") — ¢>°(T") by letting

(T = mo (6 % D)y, ).
Now if t € I" and s € I'y then from the left invariance of mg we obtain.
(Tf)(ts) = mo((ésfltfl * f)|p0) = mo(((;sfl * 01 % f)|p0)
— (8,1 % (B % Dp,) = mo((Gs + H], ) = (THE)
In other words T'f is constant on cosets tI'g of I'y. We let T f denote the function on I'/T'y such
that
(TF)(t) = (Ff)(iTo)
for all t € I'. This defines a bounded linear map 7': ¢>°(I') — ¢>°(I'/T'y) preserving unit and

positivity. Let m = m; oT.
To check left invariance of m we first see that for r € T'

(D)) E) = mo (s 6, % F)]y,) = mo(Ssiyr Dy, ) = (THE)
for all ¢t. Therefore
(T(L,f))(tT0) = (T(Ly-£))(t) = (Tf)(r~"t) = (Tf)(r~"tTo) = (T f)(r~'TotTo)
(this is the product in the quotient group I'/Ty). Now m; is left invariant, so
m(Lyf) = ml(f(er)) = ml(LrlFOTf) = ml(ff) =m(f).
Ad (4). For each a let m,, be the mean on I" given by first restricting a function to the subgroup

T, and the applying the mean on I',,. This way (m,) becomes a net of norm one functionals on
¢(I") all of which map positive elements to positive elements (and have value 1 on the constant
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functions 1 — this actually follows from the first two conditions) or in other words a net of states.
Let m be a weak®™ accumulation point of this net. Then clearly m is a state on ¢*°(I"). To
see that m is left invariant we note that if ¢ € T" then there exists ag such that ¢ € ', for all
a = «ap. Therefore for any « = ag we have mq(Lif) = mq(f) because m, is invariant under
left multiplication by elements of T',,. It follows easily that m(L.f) = m(f) for any ¢ and any
fee=(D). O

7. DAY’S CONDITIONS

We will denote by ¢ (I'); the set of norm one positive functions in ¢*(I'). As functionals on
£>°(T) these are states (more precisely all states arising from elements of ¢!(I') are necessarily
given by elements of 1 (I');). For ¢ € ¢}(T") we will denote the value of the functional on ¢>(T")
corresponding to ¢ on f € ¢>°(T") by

(@, 1) =Y d(s)f(s)-

sel’

Proposition 7.1. ¢} (T'); as a subset of £>°(T')* is weak® dense in S(¢>°(I)).

Proof. Let Sy be the image of ¢} (I'); in S(EOO(I‘))*. Clearly Sy is a convex set. If w is a state
on > which is not a limit of a net of elements of Sy then there exists an element f € ¢*°(I") and
0 > 0 such that

Rw(f) =6+ Rn(f)

for all n € Sy. Note that Sy contains all evaluation functionals and so we have
wRf)=Rw(f) =5+ Rf(t)
for all ¢t € T. Therefore w(Rf) > sup Rf which is impossible for a state. O

Definition 7.2. We say that I" satisfies weak Day’s condition if there exists a net (¢;) of elements
of £% (I'); such that for any t € T

weak™

Li¢pi — i —— 0
in £>°(T")*. The group I satisfies strong Day’s condition if there exists a net (¢;) as above such
that
| Lidi — pillt — 0.

We are speaking of weak* topology on ¢!(I") embedded in the dual of £>°(T), i.e. in its bi-dual.
This means simply the weak topology on ¢*(T'). The only reason for this strange approach is that
we want to treat elements of ¢} (I'); as states on ¢>°(T') and the natural topology on the state
space is the weak™ topology.

Theorem 7.3. T’ satisfies strong Day’s condition if and only if I' satisfies weak Day’s condition.

Proof. Let E be the product of |I'| copies of £*(T):
E=]]e(D).
ter

Then FE is a locally convex topological vector space with seminorms {|| - |; } rer given by

IENe = [1Fills,
where F' = (F})ier € E. Define T : (1(T') — E
(Tf)e=Lef = f

Let (¢;) be the net of elements of ¢ (T'); such that

Lt — ¢ 5 0

for all t € T' (weak™ topology taken from ¢°°(I')*). Then T¢; —— 0 in F in the weak topology
(because this is the product of weak topologies, i.e. a net (F'*),ca converges to 0 weakly in F if
and only if for any ¢ (Ff)ae 4 converges weakly to 0 in ¢}(I"). In other words zero is in the weak
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closure of T'(¢%.(I')1). But, as T'(¢1.(T')1) is a convex set, its weak and strong closures coincide, so
there is a net (¢;) in ¢} (I'); such that

strong
— =0

To;
in F, i.e foranyt €T
I1Lt¢; — djli —— 0.

Theorem 7.4. T is amenable if and only if I’ satisfies weak Day’s condition.

Proof. Assume that T satisfies weak Day’s condition, i.e. there is a net (¢;) of elements of £% (T');
such that i

Lig — ¢ ~5 0
for any ¢. This net has an accumulation point in the weak* compact set of all states of £>°(T").
Let m be such an accumulation point and let us use the same notation (¢;) for the subnet weak*
convergent to m. We have for any f € {*°(T') and t € T

m(Lif) = m(f) (65, Luf) = (60, f) = Y (F(t"8) = f(5))dils)

sel

= " (dilts) — ¢i(s)) f(s)

sel’
= (L-1¢i — ¢i, f) —— 0.
so m is a left invariant mean and I" is amenable.

Now assume that I' is amenable and m is a left invariant mean on ¢*°(I'). By the weak*
density of states arising from elements of ¢} (I'); in the state space of £>°(I') we can find a net (¢;)
of elements of ¢ (T'); such that the corresponding states converge to m in the weak* topology.
Therefore for any f € £°(T") and ¢t € I" we have

(Ltpi — ¢is f) = (Ledbi, ) — (b4, [)
= (¢is Li—1 f) — (¢, f)
= (¢i; Li-1 f) —m(f) + m(f) — (¢, f)
= (¢i, Li-1 f) = m(Ly— f) + m(f) = (i, f) —— 0 +0.
This shows that L;¢; — ¢; converges to 0 in the weak™ topology. O

8. REITER’S CONDITION

Definition 8.1. We say that I' satisfies Reiter’s condition if for any € > 0 and any finite FF C I’
there exists ¢ € ¢ (T'); such that

[Lsop— ol <e (3)
for all s € F.

Theorem 8.2. T' is amenable if and only if I’ satisfies Reiter’s condition.

Proof. Assume that Reiter’s condition holds. The collection Z of pairs (F,e), where FF C T is
finite and £ > 0 is ordered by

((Fl,é"l) > (FQ,EQ)) < (Fl OF, and & < 82).
For (F,e) =i € T let ¢; be the function in ¢ (I'); such that

| Lspi — @il < e
for all s € F'. It is clear that for any t € I' we have
Lipi — i —— 0

in ¢1(T), i.e. strong Day’s condition is satisfied.
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To prove the converse implication we note that amenability implies weak Day’s condition, which
by Theorem 7.3 implies strong Day’s condition. This means that we have a net (¢;) in ¢ (I');
such that for any t € T’

| Ledi — &5lli —— 0.

In other words for a fixed t € I' and € > 0 there is an index ¢; . such that for all ¢ > 4; . we have
|Legpi — @ill1 < e.
Let a finite F C T and € > 0 be given. Denote the elements of F by {t1,...,t,} and let i. be such
that 7. > 44, . for Kk =1,...,n. Then for any ¢ > i. we have
| Lspi — @il < e
for all s € F. Putting ¢ = ¢;_ we obtain an element in ¢ (I'); such that (3) holds for all s € F. O

8.1. Fglner’s condition. Let us briefly recall a related condition on I' describing amenability.

Definition 8.3. We say that I' satisfies Fglner’s condition if for any finite subset F' of I and any
€ > 0 there exists a nonempty and finite U C I" such that
|tU = U|
U
for any t € F.

We will leave the next theorem without proof.

Theorem 8.4. T' is amenable if and only if T’ satisfies Folner’s condition.

9. AMENABILITY IN TERMS OF POSITIVE DEFINITE FUNCTIONS

Let ¢ € £2(T'). Let us introduce the notation (¢) = 1(t~!). Then the convolution product ¢ =
1 *1) is well defined and it is a positive definite function associated with the regular representation:

=Y (s =D ()t "s) = (| A]v).
sel’ sel’

Theorem 9.1. T’ is amenable if and only if for any finite F C T and any € > 0 there exists
€ 2(T)y such that

}1—@*{/;@)‘ <e
forallt € F.

Proof. Assume first that I" is amenable. Then Reiter’s condition is satisfied. This means that for
any finite ' C I' and & > 0 there is ¢ € ¢} (I'); such that

[Le¢p — |l < €2
forallt € F. Let ¥ = ¢%. Then 1 € 2(T') and ¢ > 0. We have
Mo —l3 = [0t ) —p(s)|* < D[t )2 = ()2 = D |o(t ™ s)—6(s)| = [ Lip—l| < &2
sel sel sel

for all ¢t € F.'' Therefore for those t we have || \¢) — 9||2 < e. Furthermore, since [[%||3 = 1 we
can compute for t € F

1= @+ )8

| (%) — w*w)( )|
|(0]) — (] Ae|)]
|1\ — )| < Il Me — %]l < e

Conversely, assume now that for any finite K C T’ and any § > 0 there exists 1 € ¢?(I'); such
that

L= @ P)(0)] <& (4)

fiifor numbers a,b > 0 we have (a — b)2 < |a? — b2|.
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for all t € K. Let us fix finite F C T'and ¢ > 0. Let K = FUF~! and § = %. Then, by
assumption, there exists ¢ € £2(I'); such that

- ~ 2
1—(W=)t)] < 5
for any t € FUF~'. Put ¢ = [¢)|*. Then ¢ € ¢} (I');. We have for t € F

ILig = plls =D |l o) = [(s)[*| <D |t 's)* = ¢(s)?]

= D 0t s) + o (s)|[(t ™ s) = (s)]
sel

= (et + Bl [|Aeth + 9])

= |(|)\t¢+1/}|‘|)\t1/}+¢|)|

< A + Yl2[|Aetp — 2

< (IMwllz + llll2) 1A — ¥z

< 2|\t — 1

=2\t — ¥ |Aet) — )’

= 2[ (b | M) — (B Aetd) — (Ao |) + (])]
2[(1— @+ D)(1) + (1- @ =)t ™H))*
<2A5+5)t =

which proves that Reiter’s condition is satisfied. O

Corollary 9.2. T is amenable if and only if for any finite F C I' and any € > 0 there is a positive
definite function ¢ associated with the reqular representation such that (e) =1 and

|1—p(t)] <e
forallt e F.

10. FINITE SUPPORTS

Lemma 10.1. Let ¢ be a positive definite function on I' with finite support. Then there is a
function i € £2(T) such that ¢ = 1. In particular ¢ is associated with the regular representation
of .

Proof. Let T be the operator £2(I') — ¢2(T") defined as

Then T is a bounded operator (right convolution by a summable function is bounded and J7T'J is

the left convolution by @, where J is the antilinear operator (J¢)(s) = ¢(s—1) for ¢ € £*(T') and
all s € T'). Moreover T' commutes with operators {\s}ser: for any ¢ € ¢3(T') and any s,t € T’

TAsp) = (M) x P = (01 % @) ¥ @ = 0y * (¢ x ) = Mi(T'9).
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Let us also see that T is a positive operator: for any ¢ with finite support

(@IT[¢) = (016 +P)

= 6(s)(6

=) &s o(r
3703t )
= > ds)p(rTs)(r)

= D orerle)gls) = 0.
r,sEsupp ¢

because ¢ is positive definite. Clearly also (¢|T|¢) > 0 for any other ¢ € £2(T") by taking limits.
Now let us take ¢ = T245,. Then for any t €
T4

(B + )0 = WInfw) = (745
AT o)

= (14
= (rhar )

= (Tde| Me|de) = (P Aide) = (P61) = (1)

O

In the proof of the next theorem we will use the following version of Reiter’s condition: for any
finite F C T and € > 0 there exists ¢ € ¢} (T'); with finite support such that

[Li¢ — ¢lln < e

for all t € F. This is satisfied by I is and only if Reiter’s condition holds in its original formulation.
Indeed, if F' and € are given and ) € ¢ (T'); is such that

[Lep — 9l < §
for all t € F. There is a finitely supported ¢ € ¢} (I'); such that
¢ — ¥l < 3-
To construct such a ¢ find a finite S C I" such that |[¢) - xp\sl1 < §. Put ¢ =1 on S and add

value o = 1 — [|¢ - xsll1 = [[¥ - xr\sl1 at some point s ¢ S and set ¢ = 0 elsewhere. Then
[l = 1 and ¢ has finite support by construction. Clearly o > 1)(so). Moreover o < g and

¢ =l = Z Y(t) +a —P(so) < §+ §-
tZ(SU{s0})
Then we have for any t € F
1Lt¢ — ¢lln < [|Le¢ — Letblls + ([ Ly — ¥l + 1o — ¢lla
< NLelllg = Wl + [1Levp — ¥l + ¥ — ¢l <,
since ||L¢|| = 1 (as an operator on ¢*(T')). This shows that Reiter’s condition in the original
formulation implies the stronger version. The converse implication is obvious.
Theorem 10.2. T' is amenable if and only if for any finite F C ' and any € > 0 there is a finitely
supported positive definite function ¢ such that p(e) =1 and
|1—o(t)] <e
forallt € F.
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Proof. The “if” part follows from combination of Lemma 10.1 and Corollary 9.2.

Now if we assume that I' is amenable then Reiter’s condition holds and thus by the discussion
preceding formulation of our theorem we have for any finite F/ C I" and € > 0 a finitely supported
¢ € (% (I'); such that

1Li¢ — ¢l < &
for all ¢t € F. Arguing in exactly the same way as in the first part of the proof of Theorem 9.1 we
find ¢ € ¢2(I") with finite support (namely ¢ = ¢2) such that the positive definite function

o =11
satisfies
|1— ()] <e
for all t € F. Clearly ¢ has finite support. O

11. REDUCED GROUP C*-ALGEBRA AND INJECTIVITY OF THE REGULAR REPRESENTATION

As we saw in Section 1 the regular representation A : I' — B(¢%(I")) is faithful on C[I'], so that

the function
CIT] > f— A sllBez(ry)

is a C*-norm. The completion of C[I'] with respect to this norm is the reduced C*-algebra of T’
denoted by C*(T"). Clearly the identity map C[I'] — C[I'] extends uniquely to a norm decreasing
map C*(T') — CX(T"). This map is surjective since it has dense image and the image of a C*-algebra
under a *-homomorphism is always closed. We will denote this map also by the symbol A since it
is clearly the representation of C*(I") associated with the regular representation of T'.

Note that for each ¢ € I the function §,; € C[I'] corresponds to the operator A\ € C:(T).

Theorem 11.1. T is amenable if and only if A: C*(T') — C%(T) is injective.
Clearly )\ is injective if and only if it is an isomorphism.

Proof of theorem 11.1. Assume first that " is amenable. Take b € C*(T") such that A(b) = 0 and
let @ = b*b. There exists a state w of C*(T") such that w(a) = ||la||. Let ¢ = ¢, (the positive definite
function associated with w) and let (¢;) be a net of finitely supported positive definite functions
with value 1 at e approximating pointwise the constant function 1. Then (¢;) approximates the
function ¢ (pointwise). Let w; = wyy,, for all <. Then, by Proposition 2 the states (w;) converge
to w in the weak* topology.

Since oy, is finitely supported, there is an element v; € £2(T") such that

pp; = i * 1,
so that
w(de) = (i) (t) = (Yi|Aelthi) -
Thus for f € ¢*(T") we have
w(f) = (Wi|Ar|¢s)
and consequently for x € C*(I)
w(z) = (Yi| A(@) i)
In particular
w(a) = limw;(a) = lim (¢¥;| A(a)|;) =0
since A(a) = 0.
Now let us assume that A is injective. Then, as we pointed out before the proof, it is an
isomorphism. Moreover, this means that the representation of C*(I') arising from the trivial
representation is continuous on C%(T"). In other words the map

Atl—>1

extends to a continuous map ¢ : C5(I') — C (the trivial representation is continuous on C*(I")
and we pre-compose it with the inverse of A to get €). This is a representation (character), so in
particular, a state. Now any state on CX(T") is a weak* limit of convex combinations of vector



16 PIOTR M. SOLTAN

states (C;(I') € B(¢3(T'))). Therefore it is a weak* limit of vector states arising from finitely
supported functions. Therefore There is a net of states (w;) on C:(I') weak* convergent to e
such that the positive definite functions (¢.\) have finite support. It follows that the constant
function 1, i.e. the positive definite function corresponding to € can be pointwise approximated by
positive definite functions of finite support taking value 1 at e. By Theorem 10.2 the group I is
amenable. O

12. COMPLETELY POSITIVE MAPS
Let A and B be C*-algebras.

Definition 12.1. Let ® : A — B be a linear map. We say that ® is positive if it takes positive
elements to positive elements. For any n € N we define ®,, : M, (A) — M, (B) given by

i1 ai2 -0 Qin @(01,1) <I>(a172) ce ‘I’(al,n)
G21 G22 - Q2p ®(az1) Plagz) -+ P(azn)
An,1  Qn2 T Qn,n (b(an,l) (I)(an,2) T (I)(an,n)

We say that ® is completely positive (c.p.) if ®,, is positive for all n.
We will sometimes use the abbreviation “u.c.p.” for “unital completely positive”.

Lemma 12.2. A linear map ® : A — B is completely positive if and only if for any n € N and
any ai,...,a, € A the matrix

®(ajar) P(ajaz) -+ P(ajan)
O(asar) P(asaz) -+ Pasay)
: : .| € Mu(B) (5)
®(aja1) P(agaz) -+ P(anan)
18 positive.
Proof. If ® is c.p. then (5) is positive because the matrix
atay alaz -+ aja, [a}
asa1  asaz - G5ap as
=1 - [al az an]
arai ayag - QrGn Ko (©)
[a} 0 Of a1 a2 an
a3 0 010 0 0
la, O 0/ {0 O 0
is positive.
Conversely we can show that any matrix
@11 ai2 -0 Qin
az1 G222 ' 2.
a=1 . . . . € My (A)+
An,1  Qn2 T Gn,n

is a finite sum of matrices of the form (6) which proves the lemma.
So let a € M, (A) be positive. There exists a matrix

big b2 -+ bin

boi bao - bay
b= . . . . S Mn(A)

bn,l bn,2 e bn,n
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n
such that a = b*b which means that a; ; = >_ bj ;bx,;. In other words if
k=1

* * * *
bpabea  byibrz oo b iben b1
* * * *
bk,2bk71 bk72bk»2 T bk,2bk,n bk,2
cp = . . ) =1 7| [bkr brz - brn)
* * * *
bk,nbkal bk,nbk»Q e bk,nbkan bk,n
n
then we have a = > ¢. O
k=1

Corollary 12.3. Let B C B(H). Then M,(B) C B(C" ® H) and we have that ® : A — B is
c.p. if and only if for anyn € N, any ay,...,a, € A and any &1, ...,&, € H we have

n

3 (&l (aiay) €)= 0.

i,5=1

Ezample 12.4. Let A be a C*-algebra and let H and K be Hilbert spaces. Let also 7: A — B(K)
be a x-representation and let T' € B(H, K). Then the map

®: A>a— T*n(a)T € B(H)
is completely positive. Indeed, ®,,: M, (A) — M, (B(H)) is a composition of

ail1 ai2 -+ Qin 7T((11,1) 7T(a1,2) ce 7T(a1,n)
a1 az2 't a2n m(az,1) w(age) -+ w(azn)

Mp(A)> | o S . , | € M, (B(K))
an,1  Qp2 T An . n '/T(an,l) 71'(0,”’2) T W(an,n)

(which is a *-homomorphism and hence is positive) and the map
M,(B(K)) =BC"® K)> X — 1®T)'X(1®T) € B(C" ® H) = M, (B(H))
which obviously preserves positivity.

The Stinespring theorem says that any c.p. map A — B(H) has the form described in Example
12.4.

13. COMPLETELY POSITIVE MAPS AND POSITIVE DEFINITE FUNCTIONS

Let ¢ : I' — C be a positive definite function. Then ¢ defines a linear map m,, : C[I'] — C[T']
by pointwise multiplication (we interpret C[I'] as finitely supported functions on T').

Proposition 13.1. Let ¢ : T' — C be a positive definite function. Then my, : C[I'] — C[I'| extends
uniquely to a c.p. map @, : Cx(T') — CX(I'). If p(e) =1 then ®, is unital.
Proof. Let us form the GNS triple (H,, ) such that
o(t) = (&lm(d:)[€)
for all t € T (as in Section 3) and let us define S : ¢*(T') — ¢*(T', H) by
(S)(s) = ¥(s)m(ds)"¢.

S is bounded because

ell2

1S9 =D |l (s)m(85)°¢]|

sel

=5 "|w(s)|)?||m(6s)"¢

sel’

| 2

< 1€ S s)|* = el i,

sel
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so that ||S| < [|€]. Moreover for ¥ € ¢2(I', H) and t € T’ we have
(S*W)(t) = (8:]5"W) = (56, W) = Y ((S8:)()|¥(s))

sel’

=3 (6u(s)m(8) € ¥(s))

sel
= (m(0¢) €W (1)) = (&l (6:)[ V(1)) -

The space ¢2(T', H) is naturally isomorphic to the Hilbert space tensor product ¢?(I') @ H.
Therefore for any t € A we have the operaotr \; ® 1z on ¢?(I", H). Under the natural isomorphism
(?(T',H) — (*(T') ® H this operator becomes simply ((A\; ® 15)¥)(s) = (¢t 's).

Now for x € T and 9 € ¢*(T) let us compute

(5" (A @ 1) SY)(t) = (&]7(8:) | (Ne © L) S) (1))
= (&[7(0)[(S¥)(=71) )
= (&]m(8e) [t (z ) m(8,-14)"E)
= (e 't) (€| (s )\5) bz t)p(x).

This shows that S*(\; ® 15)S = ¢(x)A\y = My (05). Therefore, by linearity, we obtain
me(a) = 5" (a ©1y)S
for all a € C[I']. We see that the unique extension ®,, of m,, to a map C}(I') — C(I") is completely
positive (cf. Example 12.4). If p(e) = 1, then @, (1) = @, (dc) = de = Ae = 1. O
Let ® : C(T") — CX(T") be a completely positive map. Let us define a function ¢ : I' — C
Pa(t) = (| P(A)A7|de) -

Proposition 13.2. Let ® : C:(T") — C*(T") be a completely positive map. Then the function pg
is positive definite. If @ is unital then pg(e) = 1.
Proof. Let p denote the right reqular representation of T':

(pet)(s) = ¢(st)
for all ¢ € ¢%(T") and s € I'. The operators {p;|t € I'} commute with C(I'). Moreover for any

t € I we have Ajd. = p;0e.
Take t1,...,t, € I'. We have

w@%ﬁ{%ﬂ%mwﬂjgz@¢( 1,0
= ( y pt—ltﬁe) = (5e D(A-1y,) | P2 Py )
= ( e, ‘pt7§e) = (53 (2N JO VY ‘ptﬁe)
(o (000 [, 5)

i) -
) =

- (ptiae‘q) ’\Z’\tj ‘ptj e) — (6ti >‘ti’\tj ‘5%)7
so that the matrix
p(titt) wty'ta) - p(ty )
ety ') plty'ta) - p(ty ')
ety ') ot 't2) - ot tn)
is positive by Corollary 12.3. O

Remark 13.3.
(1) Let ¢ be a finitely supported positive definite function on I', then the associated c.p. map
P, maps into a finite dimensional subspace of C}(I"). Moreover if p(e) = 1 then @, is a
unital map.
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(2) The mapping ¢ — @, is an injection from the set of positive definite functions on I" into
the set of c.p. maps C:(I') — C(T"), but its far from being a surjection. In fact we have
forany t € I’

P, (t) = (e Pp(Ae)AF [0e)
= (de|p(t)AeA] [0e)
= ¢(t) (de[de) = (1)

(3) If &: CX(T") — CX(T') is a c.p. map which is finite dimensional (has finite dimensional
range) then the corresponding positive definite function ¢4 has finite support.

14. NUCLEARITY AND AMENABILITY

Definition 14.1. Let A and B be C*-algebras.
(1) A u.c.p. map & : A — B is called nuclear if there exists a net (®;) of finite dimensional
u.c.p. maps A — B such that
|[®i(a) — ®(a)|| — 0

for any a € A.
(2) A is called nuclear if id4 is a nuclear map.

The above definition of nuclearity of a C*-algebra is not the most common one. In fact the
most important aspect of nuclearity has to do with tensor products of C*-algebras. However, the
definition we gave is most suitable for the study of amenability of discrete groups.

Theorem 14.2. T' is amenable if and only if C:(T') is a nuclear C*-algebra.

Proof. Assume that I' is amenable. Then for any finite /' C I" and € > 0 there is a finitely
supported positive definite function ¢ . such that ¢r.(e) =1 and

|1 - @F,s(t” <e
for all t € F.

The u.c.p. maps ®,,, are all finite dimensional and clearly for any a € C[I'] the net (@, (a))
converges to a (the set of all pairs (F,¢) is directed in the obvious way). A standard argument
(using the fact that ||®,, || = 1 for all F and ¢) shows that

@y (@) — al| ——0
for all a € CX(I).

Conversely, let (®;) be a net of u.c.p. maps C;(I') — C;(I') approximating pointwise idc:(r)
and consider the net of positive definite functions (¢g,). Since

H(I)i(/\t) - )\tH —0
in Ci(T") for any ¢, we have
Pa,(t) = (8| Pi(A)Af[de) — (belde) = 1.
This means that the net (pg,) approximates the constant function 1 pointwise. By Remark 13.3(3)

the functions (ye,) have finite support and existence of such an approximating net is equivalent
to amenability of I' (Theorem 10.2). O
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